Please wait a minute...
中国烟草学报
首页  |  关于期刊  |  编 委 会  |  收录情况  |  期刊订阅  |  核对清样pdf须知  |  联系我们  |  English
中国烟草学报  2020, Vol. 26 Issue (4): 86-92    DOI: 10.16472/j.chinatobacco.2019.T0014
  农艺与调制 本期目录 | 过刊浏览 | 高级检索 |
不同水分胁迫程度下烤烟叶片钾含量的光谱响应
李梦竹1,2, 叶红朝3, 王惠2, 贾方方4, 刘国顺1
1 河南农业大学烟草行业烟草栽培重点实验室, 郑州市文化路95号 450002;
2 洛阳市烟草公司宜阳县分公司, 河南省洛阳市宜阳县红旗中路32号 471600;
3 洛阳市烟草公司, 河南省洛阳市洛龙区开元大道246号 471000;
4 商丘师范学院, 河南商丘市文化路298号 476000
Spectral response of potassium content in flue-cured tobacco leaves under different degree of water stress
LI Mengzhu1,2, YE Hongchao3, WANG Hui2, JIA Fangfang4, LIU Guoshun1
1 National Tobacco Cultivation&Physiology&Biochemistry Research Center, Henan Agricultural University, Zhengzhou 450002, China;
2 Yiyang Branch of Luoyang Municipal Tobacco Company, Yiyang 471600, China;
3 Luoyang Municipal Tobacco Company, Luoyang 471000, China;
4 Shangqiu Normal University, Shangqiu 476000, China
下载:  PDF(1595KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 [目的] 精准、快速、无损监测烤烟叶片钾素营养水平。[方法] 设计不同程度的干旱和渍水胁迫试验,以K326、中烟100为供试品种,探索不同水分胁迫程度下烤烟叶片钾含量与光谱信息的变化规律,筛选烟叶钾含量的敏感光谱特征变量及光谱参数,构建烟叶钾含量预测模型。[结果] (1)随水分胁迫程度的加重,在近红外光区,烤烟叶片钾含量和叶片光谱反射率的值在伸根期均表现为升高趋势,在旺长期与成熟期表现为降低趋势。(2)以利用本文筛选出的8个最佳敏感光谱指数(mSR705、SDr、DVI、MSAVI2、λg、Dr、NDSI(2275,1875)、RDVI)构建的BP神经网络模型效果最好,模型决定系数R2=0.9336,RMSE(均方根误差)为0.1348。[结论] 可利用光谱参数构建烤烟钾含量BP神经网络模型,模型稳定、精度较好。可为实时精准监测烤烟叶片钾含量,及时了解土壤水分环境提供技术支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李梦竹
叶红朝
王惠
贾方方
刘国顺
关键词:  烤烟叶片  水分胁迫  光谱特征变量  光谱参数  估算模型    
Abstract: [Objective] This study aims to realize accurate, rapid and nondestructive monitoring of the potassium nutrition level of flue-cured tobacco leaves. [Methods] The experiment of different degree of drought and waterlogging stress was designed. K326 and zhongyan100 were used as the test varieties to explore the change rule of potassium content and spectral information of flue-cured tobacco leaves under different degree of water stress. By screening the sensitive spectral characteristic variables and spectral parameters of potassium content of flue-cured tobacco leaves, the prediction model of potassium content in tobacco leaves was constructed. [Results] (1) With the aggravation of water stress, the K content and spectral reflectance of flue-cured tobacco leaves showed an increasing trend at the root extension stage, and a decreasing trend at the vigorous growth and mature stages. (2) The BP neural network model based on the eight best sensitive spectral indexes (msr705, SDR, DVI, msavi2, λ g, Dr, NDSI (2275, 1875), rdvi) had the best effect, R2 (decision coefficient) was 0.9336, RMSE (root mean square error) was 0.1348. [Conclusion] The BP neural network model of potassium content in flue-cured tobacco can be constructed by using spectral parameters and such constructed model is more stable and accurate. This study provides technical support for real-time and accurate monitoring of potassium content in flue-cured tobacco leaves and timely understanding of soil moisture environment.
Key words:  phosphamidon    mevinphos    isomer    tobacco    tandem mass spectrometry    supercritical fluid chromatography
收稿日期:  2019-11-08                     发布日期:  2020-09-18      期的出版日期:  2020-09-18
基金资助: 基于土壤生态效应和烟叶质量挖掘的羊粪生物有机肥研究与应用(LYKJ201902)
通讯作者:  刘国顺(1954-),教授,博士生导师,主要从事烟草栽培生理生化研究,Email:liugsh1851@163.com    E-mail:  liugsh1851@163.com
作者简介:  李梦竹(1993-),硕士研究生,研究方向为烟草栽培生理生化,Tel:15637131115,Email:pipizhu0128@qq.com
引用本文:    
李梦竹, 叶红朝, 王惠, 贾方方, 刘国顺. 不同水分胁迫程度下烤烟叶片钾含量的光谱响应[J]. 中国烟草学报, 2020, 26(4): 86-92.
LI Mengzhu, YE Hongchao, WANG Hui, JIA Fangfang, LIU Guoshun. Spectral response of potassium content in flue-cured tobacco leaves under different degree of water stress. Acta Tabacaria Sinica, 2020, 26(4): 86-92.
链接本文:  
http://ycxb.tobacco.org.cn/CN/10.16472/j.chinatobacco.2019.T0014  或          http://ycxb.tobacco.org.cn/CN/Y2020/V26/I4/86
[1] 朴香兰, 安金花, 南桂仙, 等. 叶含钾量方面的主要研究进展及研究方向[J]. 江苏农业科学, 2009(05):115-117. PIAO Xianglan, AN Jinhua, NAN Guixian, et al. Main research progress and research direction of leaf potassium content[J]. Jiangsu agricultural science, 2009(05):115-117.
[2] 熊维亮, 李舟, 高明, 等. 我国烟草钾素营养研究进展[J]. 四川农业科技, 2013(01):46-47. XIONG Weiliang, LI Zhou, GAO Ming, et al. Research progress of potassium nutrition in tobacco in China[J]. Sichuan Agricultural Science and technology, 2013(01):46-47.
[3] 刘世亮, 刘芳, 化党领, 等. 抗旱保水剂对烤烟生长及品质的影响研究[J]. 干旱地区农业研究, 2007(04):109-113. LIU Shiliang, LIU Fang, HUA dangling, et al. Study on the effect of drought resistant water retaining agent on the growth and quality of flue-cured tobacco[J]. Agricultural research in arid areas, 2007(04):109-113.
[4] 蒋阿宁, 黄文江, 赵春江, 等. 基于光谱指数的冬小麦变量施肥效应研究[J]. 中国农业科学,2007(09):1907-1913. JIANG Aning, HUANG Wenjiang, ZHAO Chunjiang, et al. Study on the effect of variable rate fertilization on Winter Wheat Based on spectral index[J]. China Agricultural Science, 2007(09):1907-1913.
[5] Cecilia Shiroma, LuisRodriguezSaona. Application of NIR and MIR spectroscopy in quality control of potato chips[J]. Journal of Food Composition and Analysis, 2008, 22(6):596-605.
[6] 王兵. 基于GIS的植物营养光谱诊断的研究[D]. 河南农业大学, 2005. WANG Bing. Study on spectral diagnosis of plant nutrition based on GIS[D]. Henan Agricultural University, 2005.
[7] 张俊华, 张佳宝. 长期定位施肥条件下作物光谱特征及养分吸收量预测[J]. 农业工程学报, 2014, 30(07):173-181. ZHANG Junhua, ZHANG Jiabao. Spectral characteristics and nutrient uptake prediction of crops under long-term fertilization conditions[J]. Journal of agricultural engineering, 2014, 30(07):173-181.
[8] Mahajan GR, Sahoo RN, Pandey VK Gupta RN, et al. Using hyperspectral remote sensing techniques to monitor nitrogen, phosphorus, Sulphur and potassium in wheat (Triticum aestivum L.)[J]. Precision Agriculture, 2014, 15(5):499-522.
[9] Gomez-Casero M T, Lopez-Granados F, Pena-Barragan J M, et al. Assessing nitrogen and potassium deficiencies in olive orchards through discriminant analysis of hyperspectral data[J]. Journal of the American Society for Horticultural Science American Society for Horticultural Science, 2007, 132(5):611-618.
[10] 邓海龙, 安静. 红富士苹果叶片全钾含量高光谱预测研究[J]. 四川地质学报, 2014, 34(S1):108-111. DENG Hailong, AN Jing. Hyperspectral prediction of total potassium content in Red Fuji apple leaves[J]. Journal of Sichuan geology, 2014, 34(S1):108-111.
[11] 岳学军, 凌康杰, 王林惠, 等. 基于高光谱和深度迁移学习的柑橘叶片钾含量反演[J]. 农业机械学报, 2019, 50(03):186-195. YUE Xuejun, LING Kangjie, WANG linhui, et al. Potassium content inversion of Citrus Leaves Based on hyperspectral and deep transfer learning[J]. Journal of agricultural machinery, 2019, 50(03):186-195.
[12] 齐浩. 基于高光谱的小麦钾素营养监测研究[D]. 南京农业大学, 2017. QI Hao. Hyperspectral monitoring of potassium nutrition in wheat[D]. Nanjing Agricultural University, 2017.
[13] 白宝璋, 王景安, 孙玉霞, 等. 植物生理学测试技术[M]. 北京:中国科学技术出版社, 1993. BAI Baozhang, WANG Jing'an, SUN Yuxia, et al. Plant physiology testing technology[M]. Beijing:China Science and Technology Press, 1993.
[14] 王瑞新, 韩富根, 杨素勤, 等. 烟草化学品质分析法[M]. 郑州:河南科学技术出版社, 1990.108-120. WANG Ruixin, HAN Fugen, YANG Suqin, et al. Chemical quality analysis of tobacco[M]. Zhengzhou:Henan science and Technology Press, 1990.108-120.
[15] 李佛琳. 基于光谱的烟草生长与品质监测研究[D]. 南京农业大学, 2006. LI Fulin. Study on tobacco growth and quality monitoring based on spectrum[D]. Nanjing Agricultural University, 2006.
[16] Huete A R. A soil-adjusted vegetation index(SAVI)[J]. Remote Sensing of Environment, 1988, 25(3):295-309.
[17] QI j, Chehbouni A, Huete A R, et al. A modified soil adjusted vegetation index[J]. Remote Sensing of Environment, 1994, 48(2):119-126.
[18] Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages[J]. Remote Sensing of Environment, 2002, 81(2):337-354.
[19] Rouse J W J, Haas R H, Schell J A, et al. Monitoring Vegetation Systems in the Great Plains with Erts[J]. Nasa Special Publication, 1974, 351:309.
[20] 罗建新, 肖汉乾, 彭建伟, 等. 施钾方法对土壤供钾能力及烤烟钾累积的影响[J]. 湖南农业大学学报(自然科学版), 2000, 26(5):352-354. LUO Jianxin, XIAO hanqian, PENG Jianwei, et al. Effects of potassium application methods on soil potassium supply and potassium accumulation in flue-cured tobacco[J]. JOURNAL OF HUNAN AGRICULTURAL UNIVERSITY (NATURAL SCIENCE EDITION), 2000, 26(5):352-354.
[21] 杨铁钊, 晁逢春, 丁永乐, 等. 烟草不同基因型叶片钾积累特性及变异分析[J]. 中国烟草学报, 2002, 8(3):11-16. YANG Tiezhao, CHAO Fengchun, DING Yongle, et al. Analysis of potassium accumulation characteristics and variation in leaves of different tobacco genotypes[J]. Acta tobacco Sinica, 2002, 8(3):11-16.
[22] 郑宪滨, 曹一平, 张福锁, 等. 不同供钾水平下烤烟体内钾的循环、累积和分配[J]. 植物营养与肥料学报, 2000, 6(2):162-172. ZHENG Xianbin, CAO Yiping, ZHANG Fushou, et al. Potassium cycling, accumulation and distribution in Flue-cured Tobacco under different potassium levels[J]. Journal of plant nutrition and fertilizer, 2000, 6(2):162-172.
[23] 贾方方. 不同水分状况对烤烟高光谱特性及生理生化指标的影响[D]. 河南郑州:河南农业大学, 2010. JIA Fangfang. Effects of different water conditions on Hyperspectral Characteristics and physiological and biochemical indexes of flue-cured tobacco[D]. Zhengzhou, Henan:Henan Agricultural University, 2010.
[24] 乔欣, 马旭, 张小超, 等. 大豆叶绿素和钾素信息的冠层光谱响应[J]. 农业机械学报, 2008(04):108-111+116. QIAO Xin, MA Xu, ZHANG Xiaochao, et al. Canopy spectral response of chlorophyll and potassium information in Soybean[J]. Journal of agricultural machinery, 2008(04):108-111+116.
[25] 李向阳. 烟草高光谱特性及其生物理化指标和化学品质、香气成分估测模型研究[D]. 河南郑州:河南农业大学, 2007. LI Xiangyang. Study on hyperspectral characteristics, biophysical and chemical indexes, chemical quality and aroma components estimation model of tobacco[D]. Zhengzhou, Henan:Henan Agricultural University, 2007.
[1] 王昆, 周忠发, 廖娟, 符勇. 基于合成孔径雷达(SAR)数据的贵州喀斯特山区烟草叶面积指数估算模型[J]. 中国烟草学报, 2015, 21(6): 34-39.
[2] 符云鹏 李国芸. 土壤水分对香料烟香味物质和感官质量的影响[J]. 中国烟草学报, 2014, 20(5): 73-79.
[3] 李强1,周冀衡2. 基于主成分回归的曲靖C3F等级烤烟评吸质量估算模型[J]. 中国烟草学报, 2011, 17(1): 26-.
[4] 符云鹏,李国芸,王义伟,李志伟,张晓燕. 短期水分胁迫对香料烟叶片含水量及渗透调节物质的影响
[J]. 中国烟草学报, 2008, 14(6): 41-.
[5] 张 华,赵百东,冀 浩,梁志敏,翁梦苓,杨天旭,崔红. 水分胁迫对烤烟腺毛超微结构的影响[J]. 中国烟草学报, 2008, 14(5): 45-.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《中国烟草学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn